funki.plots¶
- funki.plots.plot_counts_vs_n_genes(data)¶
Generates a scatter plot displaying the number of genes by counts versus total gene counts.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to generate the figure- Returns:
The figure contataining the resulting scatter plot
- Return type:
- funki.plots.plot_counts_vs_pct_mito(data)¶
Generates a scatter plot displaying the percentage of mitochondrial genes versus total gene counts.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to generate the figure- Returns:
The figure contataining the resulting scatter plot
- Return type:
- funki.plots.plot_dex(data, logfc_thr=1.0, fdr_thr=0.05)¶
Plots the results of the differential expression analisis as a volcano plot.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to generate the figurelogfc_thr (float, optional) – Threshold for signifacnce based on the log2(FC) value, defaults to
1.0
fdr_thr (float, optional) – Threshold for signifacnce based on the FDR value, defaults to
0.05
- Returns:
The figure contataining the resulting scatter plot
- Return type:
- funki.plots.plot_enrich(data, top=10)¶
Generates a horizontal barplot displaying the top results of an enrichment analysis based on the consensus score across methods.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to generate the figure (it is assumed thatfunki.analysis.enrich()
as been performed beforehand).top (int) – Number of top enriched gene sets to display based on their consensus score. If a negative number is provided, the bottom ones will be displayed instead.
- Returns:
The figure contataining the resulting bar plot
- Return type:
- funki.plots.plot_highest_expr(data, top=10)¶
Generates a box plot of the top expressed genes (based on mean expression).
- Parameters:
data (
funki.input.DataSet
) – The data set from which to generate the figuretop (int, optional) – Number of top genes to represent, defaults to
10
- Returns:
The figure contataining the resulting box plot
- Return type:
- funki.plots.plot_n_genes(data)¶
Generates a violin plot displaying the number of genes by counts. This is, number of genes per cell that have non-zero counts.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to generate the figure- Returns:
The figure contataining the resulting violin plot
- Return type:
- funki.plots.plot_pca(data, color=None, use_highly_variable=True, recalculate=False, **kwargs)¶
Plots the dimensionality reduction PCA results of a data set.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to compute the PCAcolor (str | list[str], optional) – Variables or observations to color from, defaults to
None
use_highly_variable (bool, optional) – Whether to use highly variable genes only or all genes available, defaults to
True
recalculate (bool, optional) – Whether to recalculate the dimensionality reduction, defaults to
False
**kwargs (optional) – Other keyword arguments that can be passed to scanpy.pp.pca()
- Returns:
The figure contataining the scatter plot showing the PCA embedding
- Return type:
- funki.plots.plot_pct_counts_mito(data)¶
Generates a violin plot displaying the percentage of mitochondrial genes.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to generate the figure- Returns:
The figure contataining the resulting violin plot
- Return type:
- funki.plots.plot_total_counts(data)¶
Generates a violin plot displaying the total gene counts.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to generate the figure- Returns:
The figure contataining the resulting violin plot
- Return type:
- funki.plots.plot_tsne(data, color=None, perplexity=30, recalculate=False)¶
Plots the dimensionality reduction t-SNE results of a data set.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to compute the t-SNEcolor (str | list[str], optional) – Variables or observations to color from, defaults to
None
perplexity (int, optional) – Perplexity hyperparmaeter for the t-SNE representation. Relates to the number of nearest neighbours, defaults to
30
recalculate (bool, optional) – Whether to recalculate the dimensionality reduction, defaults to
False
- Returns:
The figure contataining the scatter plot showing the tSNE embedding
- Return type:
- funki.plots.plot_umap(data, color=None, min_dist=0.5, spread=1.0, alpha=1.0, gamma=1.0, recalculate=False, **kwargs)¶
Plots the dimensionality reduction UMAP results of a data set.
- Parameters:
data (
funki.input.DataSet
) – The data set from which to compute the UMAPcolor (str | list[str], optional) – Variables or observations to color from, defaults to
None
min_dist (float, optional) – Effective minimum distance between the embedded points
spread (float, optional) – Effective scale of embedded points
alpha (float, optional) – Initial learning rate for the optimization
gamma (float, optional) – Weighting applied to negative samples for the optimization
recalculate (bool, optional) – Whether to recalculate the dimensionality reduction, defaults to
False
**kwargs (optional) – Other keyword arguments that can be passed to scanpy.tl.umap()
- Returns:
The figure contataining the scatter plot showing the UMAP embedding
- Return type: