Skip to contents

This script allows you to perform PCA plot visualization using the results of the MetaProViz analysis PCA plot visualization

Usage

VizPCA(
  InputData,
  SettingsInfo = NULL,
  SettingsFile_Sample = NULL,
  ColorPalette = NULL,
  ColorScale = "discrete",
  ShapePalette = NULL,
  ShowLoadings = FALSE,
  Scaling = TRUE,
  Theme = NULL,
  PlotName = "",
  SaveAs_Plot = "svg",
  PrintPlot = TRUE,
  FolderPath = NULL
)

Arguments

SettingsInfo

Optional: NULL or Named vector including at least one of those three information : c(color="ColumnName_Plot_SettingsFile", shape= "ColumnName_Plot_SettingsFile"). Default = NULL

SettingsFile_Sample

Optional: DF which contains information about the samples, which will be combined with your input data based on the unique sample identifiers used as rownames. Column "Conditions" with information about the sample conditions (e.g. "N" and "T" or "Normal" and "Tumor"), can be used for feature filtering and colour coding in the PCA. Column "AnalyticalReplicate" including numerical values, defines technical repetitions of measurements, which will be summarised. Column "BiologicalReplicates" including numerical values. Please use the following names: "Conditions", "Biological_Replicates", "Analytical_Replicates".Default = NULL

ColorPalette

Optional: Provide customiced color-palette in vector format. For continuous scale use e.g. scale_color_gradient(low = "#88CCEE", high = "red") and for discrete scale c("#88CCEE", "#DDCC77","#661100", "#332288")Default = NULL

ColorScale

Optional: Either "continuous" or "discrete" colour scale. For numeric or integer you can choose either, for character you have to choose discrete. Default = NULL

ShapePalette

Optional: Provide customiced shape-palette in vector format. Default = NULL

ShowLoadings

Optional: TRUE or FALSE for whether PCA loadings are also plotted on the PCA (biplot) Default = FALSE

Scaling

Optional: TRUE or FALSE for whether a data scaling is used Default = TRUE

Theme

Optional: Selection of theme for plot, e.g. theme_grey(). You can check for complete themes here: https://ggplot2.tidyverse.org/reference/ggtheme.html. If default=NULL we use theme_classic(). Default = "discrete"

PlotName

Optional: String which is added to the output files of the PCA Default = ""

SaveAs_Plot

Optional: Select the file type of output plots. Options are svg, png, pdf or NULL. Default = svg

PrintPlot

Optional: TRUE or FALSE, if TRUE Volcano plot is saved as an overview of the results. Default = TRUE

FolderPath

Optional: Path to the folder the results should be saved at. default: NULL

Input_data

DF with unique sample identifiers as row names and metabolite numerical values in columns with metabolite identifiers as column names. Use NA for metabolites that were not detected. includes experimental design and outlier column.

Value

List with two elements: Plot and Plot_Sized

Examples

Intra <- ToyData("IntraCells_Raw")[,-c(1:3)]
Res <- VizPCA(Intra)
#> Error in ggplot2::autoplot(stats::prcomp(as.matrix(InputData), scale. = as.logical(Scaling)),     data = InputPCA, colour = Param_Col, fill = Param_Col, shape = Param_Sha,     size = 3, alpha = 0.8, label = T, label.size = 2.5, label.repel = TRUE,     loadings = as.logical(ShowLoadings), loadings.label = as.logical(ShowLoadings),     loadings.label.vjust = 1.2, loadings.label.size = 2.5, loadings.colour = "grey10",     loadings.label.colour = "grey10"): Objects of class <prcomp> are not supported by autoplot.
#>  Have you loaded the required package?