Last updated: 2025-06-23

Checks: 7 0

Knit directory: Multispectral HCC/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210728) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b177463. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    code/
    Ignored:    data/
    Ignored:    old/
    Ignored:    output/.DS_Store
    Ignored:    output/cores_3/.DS_Store
    Ignored:    output/silhouette.nmf.rds
    Ignored:    output/tumor.hc.nmf.all.3.rds
    Ignored:    output/tumor.hc.nmf.rank.1.rds
    Ignored:    output/tumor.hc.nmf.rank.10.rds
    Ignored:    output/tumor.hc.umap.rds

Untracked files:
    Untracked:  Figures_V4.docx
    Untracked:  Manuskript MSI_V7_JT.docx

Unstaged changes:
    Modified:   output/cores_3/12_291_T_HCC1_Core[1,5,K]_[58929,10236].tif.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/cores_3.Rmd) and HTML (docs/cores_3.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b177463 Jovan Tanevski 2025-06-23 wflow_publish("analysis/cores_3.Rmd")
html d02791d Jovan Tanevski 2021-11-12 Build site.
Rmd f582507 Jovan Tanevski 2021-11-12 pch 21 in cores, increase resolution
html f041ce0 Jovan Tanevski 2021-11-12 Build site.
Rmd 1a7cca3 Jovan Tanevski 2021-11-12 wflow_publish("analysis/cores_3.Rmd")
Rmd a52096d Jovan Tanevski 2021-11-12 overlay tifs with cluster info, manual silhouette calculation
Rmd baf95ea Jovan Tanevski 2021-11-12 keep all residuals, fix object access
Rmd 6ff2531 Jovan Tanevski 2021-11-11 small fix
Rmd e98088d Jovan Tanevski 2021-11-11 core analysis of all hepatocytes for one core per patient
html 515f7e6 Jovan Tanevski 2021-10-28 Build site.
html 434cb0d Jovan Tanevski 2021-10-27 Build site.
html a915f46 Jovan Tanevski 2021-10-27 Build site.
Rmd a56dc0c Jovan Tanevski 2021-10-27 remove beta-cat, add cores 3 and 4 clusters

Setup

library(skimr)
library(uwot)
library(limma)
library(NMF)
library(cowplot)
library(pheatmap)
library(RColorBrewer)
library(distances)
library(furrr)
library(raster)
library(RStoolbox)
library(tidyverse)
data <- read_csv("data/tumor_hepatocytes.csv", col_types = cols())
Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
  dat <- vroom(...)
  problems(dat)
tumor.hc <- data %>%
  select(
    `Cytoplasm AGS (Opal 690) Mean (Normalized Counts, Total Weighting)`,
    `Cytoplasm BerEP4 (Opal 650) Mean (Normalized Counts, Total Weighting)`,
    `Cytoplasm CRP (Opal 540) Mean (Normalized Counts, Total Weighting)`,
    `Nucleus p-S6 (Opal 570) Mean (Normalized Counts, Total Weighting)`,
#    `Nucleus beta-cat. (Opal 520) Mean (Normalized Counts, Total Weighting)`
  ) %>%
  `colnames<-`(str_split(colnames(.), " ") %>% map_chr(~ .x[2]) %>% make.names())

skim(tumor.hc)
Data summary
Name tumor.hc
Number of rows 223846
Number of columns 4
_______________________
Column type frequency:
numeric 4
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
AGS 0 1 0.27 0.41 0 0.07 0.12 0.25 5.23 ▇▁▁▁▁
BerEP4 0 1 1.09 2.19 0 0.21 0.32 0.58 24.08 ▇▁▁▁▁
CRP 0 1 2.51 3.08 0 0.55 1.00 3.50 35.80 ▇▁▁▁▁
p.S6 0 1 1.31 1.25 0 0.58 0.94 1.61 35.24 ▇▁▁▁▁

Number of cells per core

cpc <- data %>% group_by(`Sample Name`) %>% summarise(Cells = n())
head(cpc, n = 10)
Sample Name Cells
07_4662_T_HCC1_Core[1,1,G]_[54178,3757].im3 2070
07_4662_T_HCC1_Core[1,1,O]_[64928,4237].im3 754
08_27704_T_HCC1_Core[1,3,G]_[53842,6972].im3 1711
08_27704_T_HCC1_Core[1,3,O]_[64593,7404].im3 1581
09_12058_T_HCC1_Core[1,5,G]_[53650,10140].im3 3079
09_12058_T_HCC1_Core[1,5,O]_[64353,10620].im3 2613
09_19505_T_HCC1_Core[1,7,G]_[53554,13307].im3 2020
09_19505_T_HCC1_Core[1,7,O]_[64353,13643].im3 1489
10_1150_T_HCC1_Core[1,9,G]_[53362,16427].im3 5037
10_1150_T_HCC1_Core[1,9,O]_[64209,16715].im3 3902
write_csv(cpc, "output/cells_per_core.csv")

Detect outliers based on Tukey’s interquartile approach and winsorize. Follow by quantile normalization and ranking to get rid of the effect of abundance

quartiles <- apply(tumor.hc, 2, \(x) quantile(x, c(.25, .75)))
lower <- quartiles[1, ] - 1.5 * (quartiles[2, ] - quartiles[1, ])
upper <- quartiles[2, ] + 1.5 * (quartiles[2, ] - quartiles[1, ])


tumor.hc.winsorized <- tumor.hc %>% imap_dfc(\(x, y){
  x[x < lower[y]] <- x[which.min(abs(x - lower[y]))]
  x[x > upper[y]] <- x[which.min(abs(x - upper[y]))]
  x
})

skim(tumor.hc.winsorized)
Data summary
Name tumor.hc.winsorized
Number of rows 223846
Number of columns 4
_______________________
Column type frequency:
numeric 4
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
AGS 0 1 0.19 0.16 0 0.07 0.12 0.25 0.52 ▇▅▂▁▃
BerEP4 0 1 0.46 0.35 0 0.21 0.32 0.58 1.15 ▆▇▂▁▃
CRP 0 1 2.31 2.50 0 0.55 1.00 3.50 7.93 ▇▂▁▁▂
p.S6 0 1 1.21 0.83 0 0.58 0.94 1.61 3.16 ▆▇▃▂▂
tumor.hc.norm <- normalizeQuantiles(data.frame(tumor.hc.winsorized))

skim(tumor.hc.norm)
Data summary
Name tumor.hc.norm
Number of rows 223846
Number of columns 4
_______________________
Column type frequency:
numeric 4
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
AGS 0 1 1.06 0.99 0 0.35 0.6 1.49 3.19 ▇▃▁▁▂
BerEP4 0 1 1.07 1.00 0 0.35 0.6 1.49 3.15 ▇▃▂▁▂
CRP 0 1 1.04 0.96 0 0.35 0.6 1.49 3.19 ▇▃▁▁▂
p.S6 0 1 1.04 0.96 0 0.35 0.6 1.49 3.19 ▇▃▁▁▂
tumor.hc.rank <- mutate_all(tumor.hc.winsorized, ~ rank(., ties.method = "min"))

Subsample one core per patient from the original data.

set.seed(42)
selected.cores <- data %>% select(`Sample Name`) %>% 
  mutate(sample = str_extract(`Sample Name`, "[0-9]{2}_[0-9]+")) %>% 
  group_by(`Sample Name`) %>% distinct() %>% ungroup() %>% 
  group_by(sample) %>% slice_sample() %>% pull(`Sample Name`)

subsamp <- which(data %>% pull(`Sample Name`) %in% selected.cores)

Dimensionality reduction

cache <- "output/tumor.hc.umap.rds"
if (file.exists(cache)) {
  tumor.hc.umap <- read_rds(cache)
} else {
  tumor.hc.umap <- umap(tumor.hc.norm, n_neighbors = 100, 
                        min_dist = 0.2, n_threads = 7)
  write_rds(tumor.hc.umap, cache, "gz")
}

tumor.hc.umap.sample <-
  tumor.hc.umap %>%
  `colnames<-`(c("U1", "U2")) %>%
  as_tibble()

Check if sample is representative in UMAP space

all <- ggplot(tumor.hc.umap.sample, aes(x = U1, y = U2)) +
  geom_point(size = 0.5) +
  theme_classic()

sampled <- ggplot(tumor.hc.umap.sample %>% slice(subsamp), aes(x = U1, y = U2)) +
  geom_point(color = "darkgreen", size = 0.5) +
  theme_classic()

unsampled <- ggplot(tumor.hc.umap.sample %>% slice(-subsamp), aes(x = U1, y = U2)) +
  geom_point(color = "darkred", size = 0.5) +
  theme_classic()

plot_grid(all, sampled, unsampled)

Version Author Date
f041ce0 Jovan Tanevski 2021-11-12
a915f46 Jovan Tanevski 2021-10-27

Consensus NMF

We use an efficient implementation of alternating non negative least-squares with regularized to favor sparse coefficient matrices snmf/r. In this way we aim for cleaner clustering.

cache <- "output/tumor.hc.nmf.all.3.rds"

if (file.exists(cache)) {
  tumor.hc.nmf <- read_rds(cache)
} else {
  tumor.hc.nmf <- nmf(as.matrix(t(tumor.hc.rank[subsamp, ])),
    rank = 3, method = "snmf/r",
    nrun = 10, seed = 42, verbose = TRUE,
    .options = "vkp10-m"
  )
  write_rds(tumor.hc.nmf, cache, "gz")
}

Extract basis of NMF (signature of cluster)

basismap(tumor.hc.nmf)

Assign clusters

nmf.clusters <- apply(fit(tumor.hc.nmf)@H, 2, which.max)

Assignments per core

percore <- data %>% slice(subsamp) %>% select(`Sample Name`) %>% mutate(Cluster = nmf.clusters) %>% 
  group_by(`Sample Name`) %>% select(Cluster) %>% table() %>% data.frame() %>% pivot_wider(names_from = Cluster, values_from = Freq) %>%
  rowwise() %>% mutate(purity = max(`1`, `2` ,`3`)/sum(`1`,`2`,`3`))
Adding missing grouping variables: `Sample Name`
head(percore, n=10)
Sample.Name 1 2 3 purity
07_4662_T_HCC1_Core[1,1,O]_[64928,4237].im3 39 318 397 0.5265252
08_27704_T_HCC1_Core[1,3,O]_[64593,7404].im3 0 1339 242 0.8469323
09_12058_T_HCC1_Core[1,5,O]_[64353,10620].im3 6 1350 1257 0.5166475
09_19505_T_HCC1_Core[1,7,O]_[64353,13643].im3 21 27 1441 0.9677636
10_1150_T_HCC1_Core[1,9,G]_[53362,16427].im3 40 73 4924 0.9775660
10_16169_T_HCC1_Core[1,5,N]_[62997,10487].im3 4 586 2 0.9898649
10_19418_T_HCC1_Core[1,7,F]_[52018,13307].im3 2690 2 0 0.9992571
10_26818_T_HCC1_Core[1,9,F]_[51922,16427].im3 946 2108 7 0.6886638
10_26871_T_HCC1_Core[1,11,N]_[62529,19786].im3 5 121 2861 0.9578172
10_28011_T_HCC1_Core[1,1,E]_[51298,3901].im3 944 20 2147 0.6901318
write_csv(percore, "output/clusters_per_core.csv")

Plot in 2D

tumor.hc.umap.clus <-
  tumor.hc.umap.sample %>%
  slice(subsamp) %>%
  mutate(Cluster = as.factor(nmf.clusters))

ggplot(tumor.hc.umap.clus, aes(x = U1, y = U2, color = Cluster)) +
  geom_point(size = 0.5) +
  theme_classic()

Version Author Date
f041ce0 Jovan Tanevski 2021-11-12
a915f46 Jovan Tanevski 2021-10-27

Expression profiles per cluster

tumor.hc.clustered.nmf <- tumor.hc.norm[subsamp, ] %>%
  mutate(Cluster = as.factor(nmf.clusters)) %>%
  pivot_longer(names_to = "Marker", values_to = "Norm.value", -Cluster)

profiles <- seq_len(max(nmf.clusters)) %>% map(~
ggplot(
  tumor.hc.clustered.nmf %>% filter(Cluster == .x),
  aes(x = Marker, y = Norm.value, color = Marker)
) +
  stat_summary(fun.data = mean_sdl, show.legend = FALSE) +
  scale_color_brewer(palette = "Set2") +
  ylim(-1, 3) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)))

plot_grid(plotlist = profiles, labels = paste("Cluster", seq_len(max(nmf.clusters))))
Warning: Removed 14390 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 16165 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 24968 rows containing non-finite outside the scale range
(`stat_summary()`).
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_segment()`).

Version Author Date
f041ce0 Jovan Tanevski 2021-11-12
a915f46 Jovan Tanevski 2021-10-27

Marker abundance plots

tumor.hc.umap.markers <- tumor.hc.norm %>%
  bind_cols(tumor.hc.umap.sample) %>%
  slice(subsamp)

low <- RColorBrewer::brewer.pal(8, "Set2")[8]
highs <- RColorBrewer::brewer.pal(8, "Set2")[seq_len(ncol(tumor.hc.norm))]

tumor.hc.umap.markers.plots <- colnames(tumor.hc.norm) %>%
  map2(highs, \(marker, color){
    ggplot(tumor.hc.umap.markers, aes_string(x = "U1", y = "U2", color = marker)) +
      geom_point(size = 0.5) +
      scale_color_gradient(low = low, high = color) +
      theme_classic()
  })
Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
ℹ Please use tidy evaluation idioms with `aes()`.
ℹ See also `vignette("ggplot2-in-packages")` for more information.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.
plot_grid(plotlist = tumor.hc.umap.markers.plots)

Version Author Date
f041ce0 Jovan Tanevski 2021-11-12
a915f46 Jovan Tanevski 2021-10-27

Core plots

tumor.hc.umap.cores <- data %>%
  select(`Sample Name`) %>%
  bind_cols(tumor.hc.umap.sample) %>%
  slice(subsamp) %>%
  mutate(
    c = nmf.clusters,
    sample = str_extract(`Sample Name`, "[0-9]+_[0-9]+")
  )

tumor.hc.umap.cores %>%
  group_by(sample) %>%
  summarize(
    Fraction = table(c) / n(),
    Cluster = names(Fraction),
    .groups = "drop"
  ) %>%
  mutate(Fraction = as.numeric(Fraction)) %>%
  pivot_wider(names_from = "Cluster", values_from = "Fraction") %>%
  column_to_rownames("sample") %>%
  mutate(across(everything(), ~ replace_na(., 0))) %>%
  as.matrix() %>%
  pheatmap(
    scale = "none",
    color = colorRampPalette(brewer.pal(n = 7, name = "YlOrBr"))(100),
    fontsize = 6
  )
Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
dplyr 1.1.0.
ℹ Please use `reframe()` instead.
ℹ When switching from `summarise()` to `reframe()`, remember that `reframe()`
  always returns an ungrouped data frame and adjust accordingly.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.

Version Author Date
f041ce0 Jovan Tanevski 2021-11-12
a915f46 Jovan Tanevski 2021-10-27
tumor.hc.umap.cores %>%
  pull(sample) %>%
  unique() %>%
  walk(\(s){
    output.fig <- paste0("output/cores_3/", s, ".png")
    if (!file.exists(output.fig)) {
      png(output.fig, width  = 800, height = 800)
      (ggplot(
        tumor.hc.umap.cores %>%
          mutate(c = ifelse(sample == s, c, NA), Cluster = as.factor(c)) %>%
          arrange(!is.na(Cluster), Cluster),
        aes(x = U1, y = U2, color = Cluster)
      ) +
        geom_point(size = 0.5) +
        scale_color_discrete(na.value = "gray80") +
        theme_classic()) %>%
        print()
      dev.off()
    }
  })

Figures with UMAPs for each core can be found in output.

Overlay cluster information on available tiffs

available.images <- list.files("data/core images/", full.names = TRUE)

spatial <- data %>% 
  select(`Sample Name`, `Cell X Position`, `Cell Y Position`) %>% 
  `colnames<-`(c("sample", "X", "Y")) %>%
  slice(subsamp) %>% 
  mutate(Cluster = as.factor(nmf.clusters))

available.images %>% walk(\(img){
  id <- str_extract(img, "[0-9]{2}_[0-9]+(_[^_\\.]*){4}")
  name <- str_extract(img, "[0-9]{2}_[0-9]+(_[^_\\.]*)*.tif")
  s <- paste0(id,".im3")
  if(s %in% spatial$sample){
    rb <- brick(img)
    
    
    names(rb) <- c("r", "g", "b")
    
    pdf(paste0("output/cores_3/", name, ".pdf"))
    #the t should be flipped along the y direction to match coordinates in spatial
    (ggRGB(flip(rb, "y"), maxpixels = 1e8) + 
      geom_point(data = spatial %>% filter(sample == s), 
                 aes(x = X, y = Y, color = Cluster), pch = 21) +
      theme_map()) %>%
      print()
    dev.off()
  }
  
})
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent
Warning: [rast] unknown extent

Differential expression analysis (silhouette)

Calculate the similarity of samples using the expression and the silhouette scores based on the assigned clusters.

cache <- "output/silhouette.nmf.rds"

if (file.exists(cache)) {
  silhouette.nmf <- read_rds(cache)
} else {
  # manual calculation of silhouette scores with lazily evaluated distance matrix
  subsamp.dists <- distances(tumor.hc.norm[subsamp, ])
  
  plan(multisession, workers = 5)
  
  silhouette.nmf <- nmf.clusters %>% future_imap_dbl(\(c, i){
    dists <- tibble(d = subsamp.dists[i,][-i], cluster = nmf.clusters[-i]) %>% 
      group_by(cluster) %>% 
      summarize(m = mean(d)) 
    
    a <- dists %>% filter(cluster == c) %>% pluck("m", 1)
    b <- dists %>% filter(cluster != c) %>% pull(m) %>% min()
    
    (b - a)/max(a, b)
  }, .options = furrr::furrr_options(packages = "distances"), .progress = TRUE)
  
  write_rds(silhouette.nmf, cache, "gz")
}

tibble(c = nmf.clusters, s = silhouette.nmf) %>% 
  group_by(c) %>% 
  summarize(m = mean(s))
c m
1 0.3791663
2 0.3017454
3 0.1130977
tibble(c = nmf.clusters, s = silhouette.nmf) %>% 
  group_by(c) %>% 
  summarize(zeros = sum(s<0)) %>% write_csv("output/silhouette_less_zero.csv")

print(paste0("Average silhouette score: ", mean(silhouette.nmf)))
[1] "Average silhouette score: 0.250828061783453"

Select only the samples with positive silhouette scores as “core samples”

core.samples <- which(silhouette.nmf > 0)
tumor.hc.core.samples <- tumor.hc.norm[subsamp, ] %>%
  add_column(Cluster = nmf.clusters) %>%
  slice(core.samples)

Calculate difference in means (mean(cluster) - mean(other)), one-vs-all t-test per marker and correct for FDR. Filter q <= 0.05. Plot the differences.

de.table <- unique(tumor.hc.core.samples$Cluster) %>%
  map_dfr(\(c){
    tumor.hc.core.samples %>%
      summarize(across(-Cluster, ~ t.test(.x ~ (Cluster == c))$p.value)) %>%
      pivot_longer(names_to = "Marker", values_to = "p", everything()) %>%
      mutate(Cluster = c, Difference = tumor.hc.core.samples %>%
        group_by(Cluster == c) %>%
        select(-Cluster) %>%
        group_split(.keep = FALSE) %>% map(colMeans) %>% reduce(`-`))
  }) %>%
  mutate(q = p.adjust(p, method = "fdr"), Difference = -Difference)

de.table %>%
  filter(q <= 0.05) %>%
  arrange(q)
Marker p Cluster Difference q
AGS 0 1 -1.1509970 0
BerEP4 0 1 1.3643187 0
CRP 0 1 -0.8705340 0
p.S6 0 1 -0.6053700 0
AGS 0 3 -0.4408815 0
BerEP4 0 3 -0.7472194 0
CRP 0 3 1.6290324 0
p.S6 0 3 1.4251024 0
AGS 0 2 1.6605926 0
BerEP4 0 2 -0.7006696 0
CRP 0 2 -0.7032498 0
p.S6 0 2 -0.7808243 0
de.table %>%
  pivot_wider(names_from = "Cluster", values_from = "Difference", -c(p, q)) %>%
  column_to_rownames("Marker") %>%
  as.matrix() %>%
  pheatmap(scale = "none")
Warning: Specifying the `id_cols` argument by position was deprecated in tidyr 1.3.0.
ℹ Please explicitly name `id_cols`, like `id_cols = -c(p, q)`.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.


sessionInfo()
R version 4.5.0 (2025-04-11)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.5

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.1

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.4      forcats_1.0.0        stringr_1.5.1       
 [4] dplyr_1.1.4          purrr_1.0.4          readr_2.1.5         
 [7] tidyr_1.3.1          tibble_3.3.0         ggplot2_3.5.2       
[10] tidyverse_2.0.0      RStoolbox_1.0.2.1    raster_3.6-32       
[13] sp_2.2-0             furrr_0.3.1          future_1.58.0       
[16] distances_0.1.12     RColorBrewer_1.1-3   pheatmap_1.0.13     
[19] cowplot_1.1.3        NMF_0.28             synchronicity_1.3.10
[22] bigmemory_4.6.4      Biobase_2.68.0       BiocGenerics_0.54.0 
[25] generics_0.1.4       cluster_2.1.8.1      rngtools_1.5.2      
[28] registry_0.5-1       limma_3.64.1         uwot_0.2.3          
[31] Matrix_1.7-3         skimr_2.1.5          workflowr_1.7.1     

loaded via a namespace (and not attached):
  [1] rstudioapi_0.17.1    jsonlite_2.0.0       magrittr_2.0.3      
  [4] farver_2.1.2         rmarkdown_2.29       fs_1.6.6            
  [7] vctrs_0.6.5          base64enc_0.1-3      terra_1.8-54        
 [10] htmltools_0.5.8.1    Formula_1.2-5        pROC_1.18.5         
 [13] caret_7.0-1          sass_0.4.10          parallelly_1.45.0   
 [16] KernSmooth_2.23-26   bslib_0.9.0          htmlwidgets_1.6.4   
 [19] plyr_1.8.9           cachem_1.1.0         uuid_1.2-1          
 [22] whisker_0.4.1        lifecycle_1.0.4      iterators_1.0.14    
 [25] pkgconfig_2.0.3      R6_2.6.1             fastmap_1.2.0       
 [28] digest_0.6.37        colorspace_2.1-1     ps_1.9.1            
 [31] rprojroot_2.0.4      Hmisc_5.2-3          labeling_0.4.3      
 [34] timechange_0.3.0     httr_1.4.7           compiler_4.5.0      
 [37] proxy_0.4-27         bit64_4.6.0-1        withr_3.0.2         
 [40] doParallel_1.0.17    backports_1.5.0      htmlTable_2.4.3     
 [43] DBI_1.2.3            MASS_7.3-65          lava_1.8.1          
 [46] classInt_0.4-11      ModelMetrics_1.2.2.2 tools_4.5.0         
 [49] units_0.8-7          foreign_0.8-90       httpuv_1.6.16       
 [52] future.apply_1.20.0  nnet_7.3-20          glue_1.8.0          
 [55] callr_3.7.6          nlme_3.1-168         promises_1.3.3      
 [58] grid_4.5.0           sf_1.0-21            checkmate_2.3.2     
 [61] getPass_0.2-4        gridBase_0.4-7       reshape2_1.4.4      
 [64] recipes_1.3.1        gtable_0.3.6         tzdb_0.5.0          
 [67] class_7.3-23         hms_1.1.3            data.table_1.17.6   
 [70] foreach_1.5.2        pillar_1.10.2        vroom_1.6.5         
 [73] later_1.4.2          splines_4.5.0        lattice_0.22-7      
 [76] bit_4.6.0            survival_3.8-3       tidyselect_1.2.1    
 [79] knitr_1.50           git2r_0.36.2         gridExtra_2.3       
 [82] bigmemory.sri_0.1.8  stats4_4.5.0         xfun_0.52           
 [85] statmod_1.5.0        hardhat_1.4.1        timeDate_4041.110   
 [88] stringi_1.8.7        yaml_2.3.10          evaluate_1.0.4      
 [91] codetools_0.2-20     BiocManager_1.30.26  cli_3.6.5           
 [94] rpart_4.1.24         repr_1.1.7           processx_3.8.6      
 [97] jquerylib_0.1.4      dichromat_2.0-0.1    Rcpp_1.0.14         
[100] globals_0.18.0       XML_3.99-0.18        parallel_4.5.0      
[103] gower_1.0.2          exactextractr_0.10.0 listenv_0.9.1       
[106] ipred_0.9-15         scales_1.4.0         prodlim_2025.04.28  
[109] e1071_1.7-16         crayon_1.5.3         rlang_1.1.6