Handling data (corneto.data
)#
Simple datasets (Data and Sample)#
|
A dataset container that maps sample IDs to Sample objects. |
|
Represents a sample as a collection of features. |
Modules#
Utility functions for data generation. |
Data handling utilities for CORNETO#
This module provides data handling capabilities to define input data for CORNETO’s methods and algorithms. It provides:
Classes#
Key Features#
Rich metadata support for data features
Flexible data import/export methods
Conversion between different data formats
Filtering and subsetting capabilities
Data manipulation and transformation utilities
Examples
Basic usage with Data and Sample classes:
>>> from corneto.data import Data, Sample
>>> # Create a dataset and add samples with features
>>> dataset = Data()
>>> dataset.add_sample("patient1", {"age": 45, "treatment": {"value": "drugA", "dose": "high"}})
>>> print(dataset)
Dataset(num_samples=1)
>>> # Convert to dictionary format
>>> data_dict = dataset.to_dict()
>>> print(data_dict["patient1"]["treatment"])
{'value': 'drugA', 'dose': 'high'}
Utilities#
The package also provides utility functions for generating random data:
>>> from corneto.data.util import generate_random_signalling_network
>>> # Generate a random signaling network
>>> network = generate_random_signalling_network(n=10, m=3, p_inhibitory=0.3)
>>> print(f"Generated network with {len(network)} edges")