Skip to contents

Create Mapping Ambiguities between two ID types

Usage

mapping_ambiguity(
  data,
  from,
  to,
  grouping_variable = NULL,
  summary = FALSE,
  save_table = "csv",
  path = NULL
)

Arguments

data

Translated DF from MetaProViz::translate_id reults or dataframe with at least one column with the target metabolite ID and another MetaboliteID type. One of the IDs can only have one ID per row, the other ID can be either separated by comma or a list. Optional: add other columns such as source (e.g. term).

from

Column name of the secondary or translated metabolite identifier in data. Here can be multiple IDs per row either separated by comma " ," or a list of IDs.

to

Column name of original metabolite identifier in data. Here should only have one ID per row.

grouping_variable

Optional: If NULL no groups are used. If TRUE provide column name in data containing the grouping_variable and features are grouped. Default = NULL

summary

Optional: If TRUE a long summary tables are created. Default = FALSE

save_table

Optional: File types for the analysis results are: "csv", "xlsx", "txt". Default = "csv"

path

Optional: Path to the folder the results should be saved at. Default = NULL

Value

List with at least 4 DFs: 1-3) from-to-to: 1. MappingIssues, 2. MappingIssues summary, 3. Long summary (If summary=TRUE) & 4-6) to-to-from: 4. MappingIssues, 5. MappingIssues summary, 6. Long summary (If summary=TRUE) & 7) Combined summary table (If summary=TRUE)

Examples

KEGG_Pathways <- MetaProViz::metsigdb_kegg()
InputDF <- MetaProViz::translate_id(data= KEGG_Pathways, metadata_info = c(InputID="MetaboliteID", grouping_variable="term"), from = c("kegg"), to = c("pubchem"))[["TranslatedDF"]]
Res <- MetaProViz::mapping_ambiguity(data= InputDF, from = "MetaboliteID", to = "pubchem", grouping_variable = "term", summary=TRUE)