Skip to contents

We performed differential metabolite analysis comparing ccRCC tissue versus adjacent normal tissue of the patient's subset of young patient's (age <42 years) using median normalised data from the supplementary table 2 of Hakimi et. al.(="Tissue_Norm"). metabolite values used as input with row names being metabolite trivial names. doi:10.1016/j.ccell.2015.12.004

Usage

tissue_dma_young

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 570 rows and 17 columns.

Examples

data(tissue_dma_young)
head(tissue_dma_young)
#> # A tibble: 6 × 17
#>   Metabolite          Log2FC AveExpr  t.val   p.val   p.adj      B SUPER_PATHWAY
#>   <chr>                <dbl>   <dbl>  <dbl>   <dbl>   <dbl>  <dbl> <chr>        
#> 1 1-arachidonoylgly… -0.251   0.257  -0.332 0.745   0.902   -6.45  Lipid        
#> 2 1-arachidonoylgly… -1.39    0.170  -4.07  0.00102 0.00763 -0.753 Lipid        
#> 3 1-arachidonoylgly… -1.16    0.109  -3.24  0.00550 0.0257  -2.38  Lipid        
#> 4 1-arachidonylglyc… -0.0922 -1.31   -0.252 0.804   0.942   -6.48  Lipid        
#> 5 1-docosahexaenoyl… -1.29   -0.421  -1.80  0.0929  0.216   -4.99  Lipid        
#> 6 1-heptadecanoylgl… -1.93    0.0472 -2.68  0.0172  0.0631  -3.46  Lipid        
#> # ℹ 9 more variables: SUB_PATHWAY <chr>, COMP_ID <dbl>, PLATFORM <chr>,
#> #   RI <dbl>, MASS <dbl>, CAS <chr>, PUBCHEM <dbl>, KEGG <chr>,
#> #   Group_HMDB <chr>