Generate a heatmap with importances of predictor-target interaction.
Usage
plot_interaction_heatmap(
misty.results,
view,
cutoff = 1,
trim = -Inf,
trim.measure = c("gain.R2", "multi.R2", "intra.R2", "gain.RMSE", "multi.RMSE",
"intra.RMSE"),
clean = FALSE
)
Arguments
- misty.results
a results list generated by
collect_results()
.- view
abbreviated name of the view.
- cutoff
importance threshold. Importances below this value will be colored white in the heatmap and considered as not relevant.
- trim
display targets with performance value above (if R2 or gain) or below (otherwise) this value only.
- trim.measure
the measure used for trimming.
- clean
a
logical
indicating whether to remove rows and columns with all importances are belowcutoff
from the heatmap.
See also
collect_results()
to generate
a results list from raw results.
Other plotting functions:
plot_contrast_heatmap()
,
plot_contrast_results()
,
plot_improvement_stats()
,
plot_interaction_communities()
,
plot_view_contributions()
Examples
all.samples <- list.dirs("results", recursive = FALSE)
collect_results(all.samples) %>%
plot_interaction_heatmap("intra") %>%
plot_interaction_heatmap("para.10", cutoff = 0.5)
#>
#> Collecting improvements
#>
#> Collecting contributions
#>
#> Collecting importances
#>
#> Aggregating